Spectroscopy device is promising for quick detection of stroke

June 28, 2019
The device, which relies on the combination of two optical spectroscopy techniques, could be used to quickly and noninvasively diagnose cerebral ischemia.

Knowing that stroke is caused by poor blood flow to the brain (cerebral ischemia) and must be diagnosed within the first few hours of the stroke's occurrence to be effective, a team of researchers from the Army Medical University (Chongqing, China) and the China Academy of Engineering Physics (Mianyang, China) has developed a device that uses near-infrared (near-IR) light to monitor blood flow. The device, which relies on the combination of two optical spectroscopy techniques, could be used to quickly and noninvasively diagnose cerebral ischemia.

Liguo Zhu, an author on the study, says that the instrument works thanks to near-IR diffuse optical spectroscopy, which analyzes light scattered from tissues to calculate the amount of oxygen and blood within an area, and diffuse correlation spectroscopy, which analyzes fluctuations in tissue-scattered light to measure the rate of blood flow, or blood flow index. 

"We can measure blood volume, blood oxygenation, and blood flow using suitable near-IR techniques," Zhu says, adding that near-IR light penetrates 1 to 3 cm and allows researchers to probe under the skin. 

To test their instrument, the authors strapped a device probe to a human subject’s forearm, then inflated an arm cuff around the subject’s bicep to block off blood circulation. The authors found that the measured light attenuated, or reduced in intensity, as blood flow was cut off and brightened again when the arm cuff was removed—mirroring the decrease and subsequent increase in oxygen and blood at the probe area. At the same time, the measured autocorrelation, or time lag, function decayed less rapidly when blood flow was cut off, showing that blood was moving more slowly through the area. 

The team's device, which is portable and low-cost since both spectroscopy techniques share the same detectors, can record a comprehensive profile of a body part's hemodynamics, or blood circulation, says Hua Feng, another author on the study. This capability contrasts those of previous instruments, which could only characterize certain aspects of blood flow. Feng added that devices should measure as many "hemodynamic parameters" as necessary to obtain an accurate diagnosis, as "the hemodynamics of stroke is complex."

Full details of the work appear in the journal AIP Advances.  

About the Author

BioOptics World Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editor’s Note: BioOptics World has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Fluorescent Protein Optical Imaging Considerations

March 19, 2024
What factors should you consider when your incorporate fluorescent proteins in an optical imaging application? Learn more.

Custom-Engineered Optical Solutions for Your Application

March 19, 2024
We combine advanced optical design and manufacturing technology, with decades of experience in critical applications, to take you from first designs to ongoing marketplace success...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!