Corning demonstrates 13,288 km, 40-channel fiber-optic transmission

May 11, 2012
A group at Corning Incorporated has demonstrated ultralong-haul fiber-optic transmission spanning more than 10,000 km in two different experiments—both of which involve 112 Gbit/s non-return-to-zero polarization-multiplexed quadrature phase-shift keying (NRZ-PM-QPSK) signals; 40 channels; all-Raman amplification; and ultralow-loss, large-effective-area optical fibers.

A group at Corning Incorporated (Corning, NY) has demonstrated ultralong-haul fiber-optic transmission spanning more than 10,000 km in two different experiments—both of which involve 112 Gbit/s non-return-to-zero polarization-multiplexed quadrature phase-shift keying (NRZ-PM-QPSK) signals; 40 channels; all-Raman amplification; and ultralow-loss, large-effective-area optical fibers. The first transmission consisted of 100 km spans and a fiber with an effective area of 112 microns square, and achieved a reach length of 10,228 km. The second transmission experiment had 75 km spans and a fiber with an effective area of 134 microns square, and attained a reach length of 13,288 km.

The fiber employed for the first experiment was the company’s commercially available Vascade EX 2000 fiber, which has an average attenuation of 0.163 dB/km. For the second experiment, Corning created a new prototype version of the Vascade fiber; while no attenuation-per-length data was given, the 75.5 km spans each had an average loss, including connectors, of 12.86 dB. The receiver contained a tunable optical filter, a polarization- and phase-diverse digital coherent receiver, analog-to-digital converters (ADCs), and a computer to process the sampled waveforms using standard algorithms. The system is intended for transoceanic use. Contact John Downie at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a Micro 3D Printed Benchmark Part: Send us your file.

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!