Single-molecule tracking promises discoveries, cures

April 10, 2015
New ways of imaging individual proteins and lipids will ultimately change science and medicine.
Mike May 720

New ways of imaging individual proteins and lipids will ultimately change science and medicine. Already, scientists who develop techniques for single-molecule detection envision broader applications. For example, Frank Vollmer, principal investigator at the Laboratory of Nanophotonics and Biosensing at the Max Planck Institute for the Science of Light (Erlangen, Germany), sees many other uses of his photonic microsystem. Although Vollmer started by detecting single molecules of DNA, he says, "A single-molecule biosensor can resolve the fleeting interactions between a molecule and any kind of receptor, with immediate applications in clinical diagnostics."

To reach those applications, Vollmer needs to move from a prototype to a commercial device. So far, he says, "We're at a stage where we're ready to build a sensor that can be used in academia as a simple tool to study biomolecules." He adds, "We're also getting ready to try this in a hospital, where we can implement these sensors for real detection problems."

Some of the greatest future advances in science and medicine could arise from exploring other nucleic acids. "About 75 percent of the human genome codes for RNA, compared to just under two percent for protein, and we are only beginning to understand what all of that RNA is doing," says Nils G. Walter, director of the Single Molecule Analysis in Real-Time (SMART) Center at the University of Michigan at Ann Arbor.

As part of Walter’s research, he explores RNA at the single-molecule level, and he takes a variety of approaches. "We can count the number of RNA molecules in a spot with super-resolution microscopy," he says. "From this, you can learn about functional RNA assemblies inside the cell."

He also built a prism-based TIRF microscope—modeled after one made by Steven Chu, now in the department of physics at Stanford University in California—to immobilize RNA to a surface. "Then," says Walter, "we can change the buffer conditions or measure rate constants of RNA undergoing conformational changes over time."

These single-molecule manipulations will change how scientists study biological mechanisms and learn to modify them.

About the Author

Mike May | Contributing Editor, BioOptics World

Mike May writes about instrumentation design and application for BioOptics World. He earned his Ph.D. in neurobiology and behavior from Cornell University and is a member of Sigma Xi: The Scientific Research Society. He has written two books and scores of articles in the field of biomedicine.

Sponsored Recommendations

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Fluorescent Protein Optical Imaging Considerations

March 19, 2024
What factors should you consider when your incorporate fluorescent proteins in an optical imaging application? Learn more.

Custom-Engineered Optical Solutions for Your Application

March 19, 2024
We combine advanced optical design and manufacturing technology, with decades of experience in critical applications, to take you from first designs to ongoing marketplace success...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!