Image001 (1)

Often the quality of an imaging system is expressed in terms of resolution. Resolution is a measurement of an imaging system’s ability to resolve detail in the object that is being imaged.An imaging system may have many individual components including a lens, sensor, light source, signal processor, and other components. Resolution is not totally dependent on the optics. Resolution can be influenced by factors such as the contrast of the object, characteristics of the detector, type of lighting source. The smaller the object detail, the higher the required resolution.

Resolution of the imaging system is a quantity without a standardized definition. Resolution can be defined as the separation, either in object-space angle or in image-plane distance. For which two discrete point targets can be easily discerned. Figure 1 illustrates the characteristic behavior of image-irradiance-vs-position plots in spatial domain.

Resolution can also be specified in the spatial-frequency domain as the inverse of this separation (lp/mm). A user might specifythat “the imaging optical system must resolve 100 lines per millimeter. That means a user can distinguish the presence of detail in the image separated by 1/100 millimeters.

The cut-off frequency (v0) of a diffraction limited lens is given by

Where λ is the wavelength expressed in mm andNAis the numerical aperture of the lensAn optical system cannot transmit information of spatial frequencies higher than the cutoff frequency. Shorter wavelengths yield higher resolution.

Each individual component within the imaging system can have contributions to the overall performance (MTF and resolution).Resolution can be the limiting frequency at which the MTF falls below a particular threshold, the noise-equivalent modulation (NEM), seen in Figure 2.

Using either definition, resolution is a single-number performance specification, and as such, it is often seen as being more convenient to use than MTF (which is a function instead of a single number).

References:

  1. R.R. Shannon, “4.2 Optical Transfer Function Basics” in The Art and Science of Optical Design.
  2. Glennd D. Boreman, , “Chapter 1: MTF in Optical System”, in Modulation Transfer Function in Optical and Electro-Optical Systems.
  3. Warren J. Smith, “Chapter Four: Evaluation: How Good Is This Design?”, in Modern Lens Design.

Learn More

Sponsored Recommendations

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Fluorescent Protein Optical Imaging Considerations

March 19, 2024
What factors should you consider when your incorporate fluorescent proteins in an optical imaging application? Learn more.

Custom-Engineered Optical Solutions for Your Application

March 19, 2024
We combine advanced optical design and manufacturing technology, with decades of experience in critical applications, to take you from first designs to ongoing marketplace success...