OFS technology advances high-power fiber lasers

May 30, 2006
Somerset, NJ--Researchers at OFS Laboratories have developed mode transformation technology that enables the use of high-power fiber lasers and amplifiers without many of the problems associated with free-space optics.

Somerset, NJ--Researchers at OFS Laboratories have developed mode transformation technology that enables the use of high-power fiber lasers and amplifiers without many of the problems assiciated with free-space optics. According to the company, this all-fiber solution optimizes gain fibers with independent control of input and output mode characteristics.

For high-power lasers, the optimum design of the large-mode area (LMA) gain fiber is not compatible with standard single-mode fiber. Therefore, the challenge is to develop components and assembly methods that preserve the purity of the signal mode with low signal and pump attentuation. OFS Laboratories has developed a focused fiber solution for all-fiber architecture as an alternative to free-space optics.

A typical cladding-pumped amplifier consists of a signal source multiplexed with pump light from high power, broad area diodes. In conventional free-space optics, this multiplexing is accomplished using lenses; all-fiber architecture employs a fused-fiber pump combiner. The all-fiber LMA gain module is bsed on new mode transformation technology that allows efficient coupling inside of the fiber between step-index single mode fiber with a Gaussian mode shape and LMA fiber with a non-Gaussian mode shape. According to OFS, this enables the gain fiber to be optimized for peak performance independent of concerns for signal launch and output beam quality.

"As important a technology as LMA fiber is for high-power lasers, the fact is that unless you have a good transition from Gaussian to non-Gaussian modees and back again, you cannot get consistent results from your gain module," said David DiGiovanni, president of OFS Laboratories. "Addition of new proprietary mode transformer technology to the LMA gain module creates a unit that maximizes efficiency of the LMA fiber and provides consistent, predictable signal output with high beam quality."

This new technology will be commercialied through OFS Specialty Photonics Division. Formal product release is anticipated in the first quarter of 2007.

About the Author

LFW Staff

Published since 1965, Laser Focus World—a brand and magazine for engineers, researchers, scientists, and technical professionals—provides comprehensive global coverage of optoelectronic technologies, applications, and markets. With 80,000+ qualified print subscribers in print and over a half-million annual visitors to our online content, we are the go-to source to access decision makers and stay in-the-know.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a Micro 3D Printed Benchmark Part: Send us your file.

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!