Princeton Instruments IsoPlane Spectrometer detects distortion-free extinction spectrum of nanoparticles

May 1, 2014
Princeton Instruments, which makes low-light imaging and spectroscopic instruments, has highlighted the recent work of Saulius Juodkazis, professor of nanophotonics at Swinburne University of Technology (Swinburne, Australia), and his team.

Princeton Instruments, which makes low-light imaging and spectroscopic instruments, has highlighted the recent work of Saulius Juodkazis, professor of nanophotonics at Swinburne University of Technology (Swinburne, Australia), and his team. The Swinburne group was able to image a line of chiral nanoparticles in array and detect an extinction spectrum without distortions, aided by the sharp focus and astigmatism compensation of the Princeton Instruments IsoPlane spectrometer, says the company. The project is part of the Melbourne Center for Nanofabrication (MCN), the largest nanotechnology facility in the southern hemisphere.

Recent advances in high-precision nanofabrication of 10–100 nm features on micro- and nanoparticles by electron-beam lithography (EBL) and focused ion-beam (FIB) milling create challenges for measuring the optical properties of such nano-objects. High-fidelity fabrication of arrays of nanoparticles with nanofeatures inscribed by FIB has been demonstrated.1 Such arrays of uniform particles are required for sensitive detection of absorption and light scattering at low concentrations of analyte (in gas/air or solution) by surface-enhanced Raman scattering (SERS). Arrays of nanoparticles can also be used to trap molecules and nano-objects at high-intensity-light locations ("hot spots") on the nanoparticles.2

Optical characterization of individual particles, as well as of arrays, via imaging (dark and brightfield microscopy) and spectral-extinction measurements provide the first and most informative evaluation of the fabricated patterns and individual nanoparticles. The IsoPlane spectrometer with an imaging microscope was used to obtain results published in references [1, 2].

For more information, see http://nanomelbourne.com/saulius-juodkazis and http://www.princetoninstruments.com/products/spec/isoplane/

REFERENCES:

1. G. Gervinskas, G. Seniutinas, L. Rosa, and S. Juodkazis, “Arrays of arbitrarily shaped nanoparticles: overlay-errorless direct ion write,” Adv. Optical Mater. 1(6), 456–459, 2013.

2. G. Seniutinas, L. Rosa, G. Gervinskas, E. Brasselet, and S. Juodkazis, “3D nano-structures for laser nano-manipulation,” Beilstein J. Nanotechnol. 4, 534–541, 2013.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Fluorescent Protein Optical Imaging Considerations

March 19, 2024
What factors should you consider when your incorporate fluorescent proteins in an optical imaging application? Learn more.

Custom-Engineered Optical Solutions for Your Application

March 19, 2024
We combine advanced optical design and manufacturing technology, with decades of experience in critical applications, to take you from first designs to ongoing marketplace success...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!